
Stringer: Measuring the Importance of Static
Data Comparisons to Detect Backdoors and

Undocumented Functionality

Sam L. Thomas, Tom Chothia, Flavio D. Garcia

School of Computer Science
University of Birmingham

Birmingham
United Kingdom

B15 2TT

{s.l.thomas,t.p.chothia,f.garcia}@cs.bham.ac.uk

European Symposium on Research in Computer Security (ESORICS) 2017

Thomas, Chothia, Garcia Stringer ESORICS 2017 1 / 41



Challenge

How do we reduce the manual effort required to identify

undocumented functionality and backdoors within software?

Thomas, Chothia, Garcia Stringer ESORICS 2017 2 / 41



Challenge

How do we reduce the manual effort required to identify

undocumented functionality and backdoors within software?

Thomas, Chothia, Garcia Stringer ESORICS 2017 3 / 41



Motivation

Undocumented functionality? Backdoors?

Authentication bypass by “magic” words.

Hard-coded credential checks.

Additional protocol messages that activate unexpected functionality.

Thomas, Chothia, Garcia Stringer ESORICS 2017 4 / 41



Application

Focus on embedded device firmware – it’s a challenging target:

Lots of devices, lots of firmware.

Multiple firmware versions for each device.

Impossible to manually analyse every firmware image.

Thomas, Chothia, Garcia Stringer ESORICS 2017 5 / 41



Stringer

Thomas, Chothia, Garcia Stringer ESORICS 2017 6 / 41



Objective

Identify interesting code structures and static data comparisons that

lead to backdoor-like behaviour.

Lightweight analysis.

Thomas, Chothia, Garcia Stringer ESORICS 2017 7 / 41



Method

1 Automatically identify static data comparison functions.

2 A metric for measuring the degree a binary’s functions branching is

influenced by comparisons with static data.

Thomas, Chothia, Garcia Stringer ESORICS 2017 8 / 41



Stringer

For a given binary:

1 Identify all possible static data comparison functions:

Thomas, Chothia, Garcia Stringer ESORICS 2017 9 / 41



Stringer

2 Label the basic blocks of all functions with the sets of static data

sequences that must be matched against to reach them:

Thomas, Chothia, Garcia Stringer ESORICS 2017 10 / 41



Stringer

3 Using the computed sets, calculate a score for each element of static

data:

A = 100

B = 200
. . .

4 Finally, using the scores for each item of static data, compute a score

for each function:

f = 300
. . .

Thomas, Chothia, Garcia Stringer ESORICS 2017 11 / 41



Stringer

3 Using the computed sets, calculate a score for each element of static

data:

A = 100

B = 200
. . .

4 Finally, using the scores for each item of static data, compute a score

for each function:

f = 300
. . .

Thomas, Chothia, Garcia Stringer ESORICS 2017 11 / 41



Identifying Static Data Comparison Functions

Thomas, Chothia, Garcia Stringer ESORICS 2017 12 / 41



Identifying static data comparison functions

Approach based upon concrete observations:

Analyse calls to static data comparison functions in C/C++ binaries.

Collect properties that are common amonst them: call-sites, number

of arguments, how they influence branching, . . .

Thomas, Chothia, Garcia Stringer ESORICS 2017 13 / 41



Motivating Example

HTTP protocol parser from mini httpd binary:

Thomas, Chothia, Garcia Stringer ESORICS 2017 14 / 41



Call-site Properties

Argument references: at least one argument refers to the data/read-only
data section:

Thomas, Chothia, Garcia Stringer ESORICS 2017 15 / 41



Call-site Properties

Function arity: (number of arguments passed): usually 2-3:

Thomas, Chothia, Garcia Stringer ESORICS 2017 16 / 41



Call-site Properties

Branching properties: boolean comparison (i.e. matches or not):

Thomas, Chothia, Garcia Stringer ESORICS 2017 17 / 41



Call-site Properties

Local call frequency: (for parsers: use same comparison function many
times with different static data):

Thomas, Chothia, Garcia Stringer ESORICS 2017 18 / 41



Data Properties

Identify static data properties (with parsers in mind):

Thomas, Chothia, Garcia Stringer ESORICS 2017 19 / 41



Finding Static Data Comparisons

1 For each function, identify blocks that contain function calls.

2 Filter those blocks where the function call does not influence
branching or the comparison condition is not boolean.

Thomas, Chothia, Garcia Stringer ESORICS 2017 20 / 41



Finding Static Data Comparisons (cont.)

3 For each argument, tag what it refers to: data section, read-only data
section, other (e.g. register):

Thomas, Chothia, Garcia Stringer ESORICS 2017 21 / 41



Finding Static Data Comparisons (cont.)

4 Using these assignments, update likelihood of function being a
comparison function:

Thomas, Chothia, Garcia Stringer ESORICS 2017 22 / 41



Assigning Scores to Static Data & Functions

Thomas, Chothia, Garcia Stringer ESORICS 2017 23 / 41



Scoring Goals

A means to discover those branches within each function that are
dependent upon static data and assign them and the associated static
data a score of relative importance in relation to other such branches
within that function based upon how much unique functionality they
guard.

A function-level score that signifies which functions contain a
relatively high density of decision logic that depends on comparison
with static data (i.e. a large amount of their decision logic is
influenced by comparison with static data).

Thomas, Chothia, Garcia Stringer ESORICS 2017 24 / 41



Control Flow Properties

Minimise the score propagated from join-points - blocks reached by many
paths:

Thomas, Chothia, Garcia Stringer ESORICS 2017 25 / 41



Control Flow Properties

Maximise score of blocks that guard unique functionality - can’t be
reached by any other path:

Thomas, Chothia, Garcia Stringer ESORICS 2017 26 / 41



Computation of Scores

Two stage process:

1 Compute static data sequences: sets of sequences of static data that
must be matched to reach each block.

2 Distribute scores based upon computed static data sequences.

Thomas, Chothia, Garcia Stringer ESORICS 2017 27 / 41



Computation of Static Data Sequences

Compute sets of sequences of static data that must be matched to reach a
given block:

Thomas, Chothia, Garcia Stringer ESORICS 2017 28 / 41



Computation of Static Data Scores

1 For each block’s static data set of sequences, we calculate a fraction
of how each element of static data impacts the reachability to that
block; e.g. for block 6:

Thomas, Chothia, Garcia Stringer ESORICS 2017 29 / 41



Computation of Static Data Scores

1 For each block’s static data set of sequences, we calculate a fraction
of how each element of static data impacts the reachability to that
block; e.g. for node 6:

We have: {[A] , [A,B,C ]}, so we calculate: A : 2
2 ,B : 1

2 ,C : 1
2 .

Thomas, Chothia, Garcia Stringer ESORICS 2017 30 / 41



Computation of Static Data Scores

2 We calculate two other values for the block (b):

ω(b)
A base score for the block

1
degin(b)

The penalty incurred for being
reachable by multiple blocks

Thomas, Chothia, Garcia Stringer ESORICS 2017 31 / 41



Computation of Static Data Scores

3 . . . and calculate the update to the influence of an element of static
data; e.g. for C :

Cscore ← Cscore + ω(b)× ln(1 + 1
2 ×

1
degin(b))

Thomas, Chothia, Garcia Stringer ESORICS 2017 32 / 41



Computation of Function Score

The score assigned to a function is the sum of the scores assigned to
the static data that influences its branching. From the previous
example:

fscore = Ascore + Bscore + Cscore

Thomas, Chothia, Garcia Stringer ESORICS 2017 33 / 41



Results & Evaluation

Thomas, Chothia, Garcia Stringer ESORICS 2017 34 / 41



Hard-coded Credentials in Ray Sharp DVR Firmware

Identification of hard-coded credential pair in Ray Sharp DVR firmware:

Comparison Function Score

strcmp 5170.30
sub 1C7EC (strcmp wrapper) 1351.96

strncmp 1109.73
strstr 353.93
memcmp 222.00

(2)

(1)

Label Score Static Data Function Depends

1 30.23 664225 strcmp {[]}
2 2.77 root strcmp {[664225]}

Thomas, Chothia, Garcia Stringer ESORICS 2017 35 / 41



Hard-coded Credentials in Q-See DVR Firmware

Identification of a hard-coded credential backdoor in DVR firmware –
different behaviour for each hardcoded password:

Comparison Function Score

strcmp 1464.70
strncmp 779.33

CRYPTO malloc (FP) 685.10
ZNKSs7compareEPKc 376.20

strstr 306.00
strcasecmp 196.00

Label Score Static Data Function Depends

1 171.39 admin strcmp {[]}
2 58.92 ppttzz51shezhi strcmp {[admin]}
3 45.13 6036logo strcmp {[admin]}
4 42.14 6036adws strcmp {[admin]}
5 37.54 6036huanyuan strcmp {[admin]}
6 35.21 6036market strcmp {[admin]}
7 31.05 jiamijiami6036 strcmp {[admin]}

(7)

(5)

(1)

(3)

(2)

(6)

(4)

+

Thomas, Chothia, Garcia Stringer ESORICS 2017 36 / 41



TrendNet HTTP Authentication with Hard-coded
Credentials

HTTP authentication check with comparison against hard-coded
credential values:

Comparison Function Score

strcmp 1635.01
strstr 481.20

nvram get (FP) 413.10
strncmp 265.45

sub A2D0 (FP) 131.00

Static Data Score Function Depends

emptyuserrrrrrrrrrrr 132.17 strcmp {. . .}
emptypasswordddddddd 128.61 strcmp {[. . . , emptyuserrrrrrrrrrrr]}

Thomas, Chothia, Garcia Stringer ESORICS 2017 37 / 41



Recovery of SOAP-based Command Set

We are also able to recover the command sets of proprietary protocols, in
this case a SOAP command set:

Comparison Function Score

strcmp 380.52
safestrcmp (custom string comparison) 221.00

strstr 185.00
strcasecmp 184.00

Label Score Static Data

1 7.64 EnableTrafficMeter

2 7.64 SetTrafficMeterOptions

3 7.64 SetGuestAccessEnabled

4 7.64 SetGuestAccessEnabled2

5 7.64 SetGuestAccessNetwork

6 7.64 SetWLANNoSecurity

7 7.64 SetWLANWPAPSKByPassphrase

(4)

(3)

(1)

(2)

(7)

(5)

(6)

Thomas, Chothia, Garcia Stringer ESORICS 2017 38 / 41



Performance

Average processing time for a binary: 1.3s.

Some take longer - depends upon number of functions and CFG
complexity:

Q-See DVR firmware took 46.043s with 15, 669 functions.

Thomas, Chothia, Garcia Stringer ESORICS 2017 39 / 41



Conclusion

We present heuristics to automatically idenitify static data
comparison functions effectively.

We present complementary static data and function scoring metrics
to aid in identifying hard-coded credentials and gaining insights to
software functionality in a lightweight manner.

We show our techniques are effective by discovering 3 backdoors and
recovering a proprietary command set.

Thomas, Chothia, Garcia Stringer ESORICS 2017 40 / 41



Questions?

Thomas, Chothia, Garcia Stringer ESORICS 2017 41 / 41


	Stringer
	Identifying Static Data Comparison Functions
	Assigning Scores to Static Data & Functions
	Results & Evaluation
	Questions?

