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Challenge

How do we reduce the manual effort required to identify

undocumented functionality and backdoors within software?
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Motivation

Undocumented functionality? Backdoors?

Authentication bypass by “magic” words.

Hard-coded credential checks.

Additional protocol messages that activate unexpected functionality.
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Application

Focus on embedded device firmware – it’s a challenging target:

Lots of devices, lots of firmware.

Multiple firmware versions for each device.

Impossible to manually analyse every firmware image.
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Stringer
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Objective

Identify interesting code structures and static data comparisons that

lead to backdoor-like behaviour.

Lightweight analysis.
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Method

1 Automatically identify static data comparison functions.

2 A metric for measuring the degree a binary’s functions branching is

influenced by comparisons with static data.
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Stringer

For a given binary:

1 Identify all possible static data comparison functions:
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Stringer

2 Label the basic blocks of all functions with the sets of static data

sequences that must be matched against to reach them:
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Stringer

3 Using the computed sets, calculate a score for each element of static

data:

A = 100

B = 200
. . .

4 Finally, using the scores for each item of static data, compute a score

for each function:

f = 300
. . .

Thomas, Chothia, Garcia Stringer ESORICS 2017 11 / 41



Stringer

3 Using the computed sets, calculate a score for each element of static

data:

A = 100

B = 200
. . .

4 Finally, using the scores for each item of static data, compute a score

for each function:

f = 300
. . .

Thomas, Chothia, Garcia Stringer ESORICS 2017 11 / 41



Identifying Static Data Comparison Functions
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Identifying static data comparison functions

Approach based upon concrete observations:

Analyse calls to static data comparison functions in C/C++ binaries.

Collect properties that are common amonst them: call-sites, number

of arguments, how they influence branching, . . .
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Motivating Example

HTTP protocol parser from mini httpd binary:
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Call-site Properties

Argument references: at least one argument refers to the data/read-only
data section:
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Call-site Properties

Function arity: (number of arguments passed): usually 2-3:
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Call-site Properties

Branching properties: boolean comparison (i.e. matches or not):
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Call-site Properties

Local call frequency: (for parsers: use same comparison function many
times with different static data):
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Data Properties

Identify static data properties (with parsers in mind):
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Finding Static Data Comparisons

1 For each function, identify blocks that contain function calls.

2 Filter those blocks where the function call does not influence
branching or the comparison condition is not boolean.
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Finding Static Data Comparisons (cont.)

3 For each argument, tag what it refers to: data section, read-only data
section, other (e.g. register):
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Finding Static Data Comparisons (cont.)

4 Using these assignments, update likelihood of function being a
comparison function:
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Assigning Scores to Static Data & Functions
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Scoring Goals

A means to discover those branches within each function that are
dependent upon static data and assign them and the associated static
data a score of relative importance in relation to other such branches
within that function based upon how much unique functionality they
guard.

A function-level score that signifies which functions contain a
relatively high density of decision logic that depends on comparison
with static data (i.e. a large amount of their decision logic is
influenced by comparison with static data).
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Control Flow Properties

Minimise the score propagated from join-points - blocks reached by many
paths:
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Control Flow Properties

Maximise score of blocks that guard unique functionality - can’t be
reached by any other path:
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Computation of Scores

Two stage process:

1 Compute static data sequences: sets of sequences of static data that
must be matched to reach each block.

2 Distribute scores based upon computed static data sequences.

Thomas, Chothia, Garcia Stringer ESORICS 2017 27 / 41



Computation of Static Data Sequences

Compute sets of sequences of static data that must be matched to reach a
given block:
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Computation of Static Data Scores

1 For each block’s static data set of sequences, we calculate a fraction
of how each element of static data impacts the reachability to that
block; e.g. for block 6:
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Computation of Static Data Scores

1 For each block’s static data set of sequences, we calculate a fraction
of how each element of static data impacts the reachability to that
block; e.g. for node 6:

We have: {[A] , [A,B,C ]}, so we calculate: A : 2
2 ,B : 1

2 ,C : 1
2 .
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Computation of Static Data Scores

2 We calculate two other values for the block (b):

ω(b)
A base score for the block

1
degin(b)

The penalty incurred for being
reachable by multiple blocks

Thomas, Chothia, Garcia Stringer ESORICS 2017 31 / 41



Computation of Static Data Scores

3 . . . and calculate the update to the influence of an element of static
data; e.g. for C :

Cscore ← Cscore + ω(b)× ln(1 + 1
2 ×

1
degin(b))
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Computation of Function Score

The score assigned to a function is the sum of the scores assigned to
the static data that influences its branching. From the previous
example:

fscore = Ascore + Bscore + Cscore
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Results & Evaluation
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Hard-coded Credentials in Ray Sharp DVR Firmware

Identification of hard-coded credential pair in Ray Sharp DVR firmware:

Comparison Function Score

strcmp 5170.30
sub 1C7EC (strcmp wrapper) 1351.96

strncmp 1109.73
strstr 353.93
memcmp 222.00

(2)

(1)

Label Score Static Data Function Depends

1 30.23 664225 strcmp {[]}
2 2.77 root strcmp {[664225]}
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Hard-coded Credentials in Q-See DVR Firmware

Identification of a hard-coded credential backdoor in DVR firmware –
different behaviour for each hardcoded password:

Comparison Function Score

strcmp 1464.70
strncmp 779.33

CRYPTO malloc (FP) 685.10
ZNKSs7compareEPKc 376.20

strstr 306.00
strcasecmp 196.00

Label Score Static Data Function Depends

1 171.39 admin strcmp {[]}
2 58.92 ppttzz51shezhi strcmp {[admin]}
3 45.13 6036logo strcmp {[admin]}
4 42.14 6036adws strcmp {[admin]}
5 37.54 6036huanyuan strcmp {[admin]}
6 35.21 6036market strcmp {[admin]}
7 31.05 jiamijiami6036 strcmp {[admin]}

(7)

(5)

(1)

(3)

(2)

(6)

(4)

+
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TrendNet HTTP Authentication with Hard-coded
Credentials

HTTP authentication check with comparison against hard-coded
credential values:

Comparison Function Score

strcmp 1635.01
strstr 481.20

nvram get (FP) 413.10
strncmp 265.45

sub A2D0 (FP) 131.00

Static Data Score Function Depends

emptyuserrrrrrrrrrrr 132.17 strcmp {. . .}
emptypasswordddddddd 128.61 strcmp {[. . . , emptyuserrrrrrrrrrrr]}
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Recovery of SOAP-based Command Set

We are also able to recover the command sets of proprietary protocols, in
this case a SOAP command set:

Comparison Function Score

strcmp 380.52
safestrcmp (custom string comparison) 221.00

strstr 185.00
strcasecmp 184.00

Label Score Static Data

1 7.64 EnableTrafficMeter

2 7.64 SetTrafficMeterOptions

3 7.64 SetGuestAccessEnabled

4 7.64 SetGuestAccessEnabled2

5 7.64 SetGuestAccessNetwork

6 7.64 SetWLANNoSecurity

7 7.64 SetWLANWPAPSKByPassphrase

(4)

(3)

(1)

(2)

(7)

(5)

(6)
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Performance

Average processing time for a binary: 1.3s.

Some take longer - depends upon number of functions and CFG
complexity:

Q-See DVR firmware took 46.043s with 15, 669 functions.
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Conclusion

We present heuristics to automatically idenitify static data
comparison functions effectively.

We present complementary static data and function scoring metrics
to aid in identifying hard-coded credentials and gaining insights to
software functionality in a lightweight manner.

We show our techniques are effective by discovering 3 backdoors and
recovering a proprietary command set.
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Questions?
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