
HumIDIFy: A Tool for Hidden
Functionality Detection in Firmware

Sam L. Thomas, Flavio D. Garcia, Tom Chothia

School of Computer Science
University of Birmingham

Birmingham
United Kingdom

B15 2TT

{s.l.thomas,f.garcia,t.p.chothia}@cs.bham.ac.uk

14th Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA 2017)

July 7th 2017

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 1 / 30

Overview

COTS embedded device security is a disaster:

Poor coding practices.

Internet-facing “debug” interfaces.

Hard-coded credential checks.

Additional, hidden services.

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 2 / 30

Overview (cont.)

Lots of devices, lots of firmware (mostly Linux based).

Multiple architectures (ARM, MIPS, PPC, etc.).

Multiple firmware versions for each device.

Manual analysis takes significant time and expertise.

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 3 / 30

Existing Approaches

A Large Scale Analysis of the Security of Embedded Firmwares (Costin, et al.).

Automated Dynamic Firmware Analysis at Scale: A Case Study on Embedded Web

Interfaces (Costin, et al.).

Firmalice - Automatic Detection of Authentication Bypass Vulnerabilities in Binary

Firmware (Shoshitaishvili, et al.).

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 4 / 30

HumIDIFy

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 5 / 30

Research Objective

Address the problem of detecting additional, unexpected functionality in common services.

A lightweight way to:

Identify classes of program functionality.

Identify anomalous functionality within those classes.

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 6 / 30

Research Method

A means to identify classes of program functionality:

Use machine learning to identify classes of programs.

A means to identify anomalous functionality:

Use a DSL to define expected program functionality.

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 7 / 30

HumIDIFy

Unpacking Engine
unpack : F → (E × E × . . .× E)

Classifier
classify : E → (E × C × [0, 1])

Profile-Evaluator
profile : (E × C × [0, 1])→ (E × C × [0, 1]× {true, false})

Profile Database
lookup : C → P

f

e0 e1 . . . en

(ei , ci , vi)
ci

pi

(ei , ci , vi , bi)

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 8 / 30

Data-set Composition

Collected set of firmware (15,438 images) from multiple vendors (30).

Unpacked firmware reduced the data set to 7590 images

(2,451,532 binaries).

3-way split of data set into training and validation sets and a further set for evaluation.

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 9 / 30

Classifying Binary Functionality

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 10 / 30

Attribute Selection

Focus on features that are consistent across different architectures:

Strings.

Imported API names.

Labels describe broad functionality categories (e.g. web server, etc.).

Use CfsSubsetEval with BestFirst ranking.

E.g. 〈1, 1, 0, . . . , web-server〉.

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 11 / 30

Classifier Construction

Semi-supervised learning:

What?

Why?

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 12 / 30

Supervised Algorithm Evaluation

We first evaluated a number of supervised algorithms and selected the most optimal in terms

of classification rate and time:

Classifier Correct (%) Time (s)

BayesNet 88.4848 0.00

NaiveBayes 79.3939 0.01

IBk 84.2424 0.00

KStar 84.2424 0.00

LWL 51.5152 0.00

JRip 66.6667 0.08

OneR 21.2121 0.00

PART 77.5758 0.04

Classifier Correct (%) Time (s)

ZeroR 10.9091 0.00

DecisionStump 20.6061 0.00

HoeffdingTree 79.3939 0.00

J48 76.9697 0.00

LMT 85.4545 0.90

RandomForest 88.4848 0.11

RandomTree 78.7879 0.00

REPTree 64.8485 0.03

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 13 / 30

Bounded Self-Training

function boundedSelfTraining(labelledData, unlabelledData, v, bound)
L ← labelledData, U ← unlabelledData, k ← 0
loop

train f from L using supervised learning
(k’, L’, U’) ← apply f to unlabelled instances in U where u ∈ U’ if confidence(f(u)) ≥ v
if U = U’ ∨ k’ − k ≤ bound then return f
end if
k ← k’, L ← L’, U ← U’

end loop
end function

Iteration 1 2 3 4 5 6 7 8

Correct (%) 88.4848 95.4819 97.0760 97.9021 98.5462 99.2366 99.3256 99.3691

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 14 / 30

Binary Functionality Description Language

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 15 / 30

Binary Functionality Description Language

A simple domain specific language to express properties of programs:

rule uses udp() = exists socket(domain:int, type:int, protocol:int) ⇒
if architecture(“MIPS”) then type == 2 else type == 1

rule may read files() = exists fopen(filename:string , mode:string) ⇒
(mode == “r” || mode == “r+” || mode == “w+” || mode == “a+”)

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 16 / 30

Binary Functionality Description Language

BFDL is used to define the expected properties of a functionality class from the classifier.

It is based upon a simple grammar that allows user-defined rules matching over both

functional properties of code and meta data found within the binary being analysed.

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 17 / 30

Binary Functionality Description Language

Features built-in rules to identify:

Strings (and if they are referenced within code):
string exists, string ref

Function imports and exports (and if they are referenced within code):
import exists, export exists, function ref

Function usage - if and how a function is used (and analyse the properties of the
arguments passed to it):
exists f(x:int, ...) ⇒ (x = ...), forall f(...) ⇒ ...

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 18 / 30

Binary Functionality Description Language

Examples

import “prelude.bfdl”

rule web server() = uses tcp() && !uses udp() && may read write files()
&& !outgoing socket()

rule puts x(x:string) = exists puts(v:string) ⇒ v == x

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 19 / 30

Expected Functionality Classifier + Functionality Checker ≈ Anomalous Functionality

Detector

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 20 / 30

Evaluation & Results

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 21 / 30

Evaluation of Classifier

For a total of 24 different functionality classes:

Classification rate of 99.3692% on training data

Classification rate of 96.4523% on separate test data (manually labelled - 451 binaries)

For the most common services our classifier is highly effective in assigning the correct
functional class to a given binary.

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 22 / 30

Evaluation of Classifier

Misclassified instances were generally due to overlapping functionality:

busybox implements a large amount of diverse functionality.

API usage overlapping in network-based services caused some mislabelling.

Most commonly mislabelled functionality class “nvram-get-set” is a label describing
binaries that perform reads/writes from the NVRAM, usually used to preserve user
configuration data. This was largely due to how device vendors implement such
functionality: some use calls to external programs (e.g. nvram-get, nvram-set), others
implement the functionality directly.

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 23 / 30

Evaluation of HumIDIFy

Evaluated on “artificial instances”: we added an extremely simple UDP-based backdoor in
mini httpd and utelnetd.

We tested unmodified instances of each using HumIDIFy to observe the classification
(both classified correctly).

Performed the same classification attempt upon the modified binaries: produce the same
classification and feature vectors.

Both unmodified binaries are passed as fine, both modified binaries are detected as
anomalous – both fail to meet their expected functionality profile.

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 24 / 30

Evaluation of HumIDIFy on Real World Firmware

From 392 unique binaries from 100 firmware images, 9 were flagged as anomalous by
HumIDIFy:

A web server containing a previously documented “management interface” backdoor
providing shell execution upon the device.

A web server with a built-in DNS resolver.

Custom service implementing an Internet telephony proxy detected as a TCP daemon,
but supported UDP as a means of data exchange.

A custom service implementing HTTP proxy functionality, part of Trent Micro kernel
engine additionally using UDP to communicate.

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 25 / 30

Run-time Performance

Average run-time performance statistics:

Attribute extraction: 1.31s.

Classification of single binary: 0.291s (not including time taken to invoke the Java virtual
machine).

Performance of DSL evaluator is dependent upon the complexity of the binary under
analysis (number of functions and complexity of the functions): 1.53s on average.

Time to process an “average” firmware image: 970.61s.

Performance analysis does not take into account the human factor in final manual
analysis.

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 26 / 30

Limitations & Security Analysis

Can we evade HumIDIFy?

Current analysis relies on ability to extract imported symbols.

We look for a specific class of unexpected functionality.

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 27 / 30

Limitations & Security Analysis (cont.)

What about binaries that deliberately attempt to masquerade as something else?

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 28 / 30

Conclusion

We construct a classifier to identify functionality in common services in Linux-based
firmware.

We develop a domain specific language to define the expected functionality of such
common services.

By combining the two components we are able to identify common services that exhibit
anomalous functionality.

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 29 / 30

Questions?

Thomas, Garcia, Chothia HumIDIFy DIMVA 2017 30 / 30

	HumIDIFy
	Classifying Binary Functionality
	Binary Functionality Description Language
	Expected Functionality Classifier + Functionality Checker Anomalous Functionality Detector
	Evaluation & Results
	Questions?

