BINARLY 2026

binarly

Broken Trust:

Firmware Bypass Chains,
BMC Persistence, and EDI

asion

Alex Matrosov, Fabio Pagani
@DistrictCon 1

binarly.io

BINARLY 2026

Binarly REsearch Team

Anton -
lvanov 7 - Pagani

@ant_av/

binar/,

BINARLY 2026

binarly

The Invisible Foundation:
Firmware is Everywhere

BINARLY 2026

PERSONAL =
COMPUTING

Laptops, desktops
Enterprise servers

CORE =
INFRASTRUCTURE

Enterprise servers
Network appliances

CRITICAL SYSTIEMS

ATMs
Voting machines

The Scale of Code in Modern Firmware

SQLite 438k 183k
Linux kernel 6.18 (defconfig) |19.9M 6.5M
BMC (uboot + kernel + libs) | 25.9M 8.9M
Laptop UEFI Firmware 30.1M /M

* Counted using scc on the output of IDA Pro's 'Create ASM File' and 'Create C File'.

BINARLY 2026

%QLite

&

BINARLY 2026

Firmware: A Reality Check

e Billions of heterogeneous devices across the entire computing stack
e Large codebase: millions of lines of C code

e Testing is non-trivial, highly hardware-dependent

e What can go wrong?

BINARLY 2026

LogoFAIL

tru ssteecdu INbeo UBnDdoatr‘ ies
SUMMARY Operating System
e Majority of UEFI firmware contains image parsers °
e VVendors allow customization of the logo displayed NpE————
during boot custon-fose e
e Image parsers written in C, found crashes after - Q : nigesk
seconds of fuzzing “ t) flow
DEVELOPING A POC Q. .
1. From the OS, store a malformed image on the ESP & Inage Parser)
2. Reboot the system S
3. UEFI firmware parses the malformed image & i
4. Integer overflow to Heap overflow to DXE arbitrary ”
code execution

https://www.binarly.io/blog/finding-logofail-the-dangers-of-image-parsing-during-system-boot
https://www.binarly.io/blog/inside-the-logofail-poc-from-integer-overflow-to-arbitrary-code-execution

https://www.binarly.io/blog/finding-logofail-the-dangers-of-image-parsing-during-system-boot
https://www.binarly.io/blog/inside-the-logofail-poc-from-integer-overflow-to-arbitrary-code-execution

Unknown Vulnerabilities Threatening

the UEFI Ecosystem

DoubleGetVariable 8.2 (High) CWE-787: Out-of-bounds Write
GetSetVariable 6.0 (Medium) CWE-125: Out-of-bounds Read
PointerViaVariable (Memory Write) 8.2 (High) CWE-787: Out-of-bounds Write

CWE-822: Untrusted Pointer Dereference
PointerViaVariable (Function Call) 8.2 (High) CWE-822: Untrusted Pointer Derefere

CWE-829: Inclusion of Untrusted Fun
SmmCommBuffer (Memory Write) 8.2 (High) CWE-787: Out-of-bounds Write

CWE-822: Untrusted Pointer Derefere
SmmCommBuffer (Callout) 8.2 (High) CWE-822: Untrusted Pointer Dereferenc

CWE-829: Inclusion of Untrusted Functional

Exploiting UEFI SMM Vulnerabilities For Persistent Implants, Nika Korchok Wakulich, OOTB2025BKK, https://www.youtube.com/watch?v=0zM2aGsiD1s

BINARLY 2026

https://www.youtube.com/watch?v=OzM2aGsiD1s

Secure Boot
Vulnerabillities Impacting
the Chain of Trust

Recent vulnerabilities impacting Secure Boot:

e PKfail
e HydrophObia (CVE-2025-4275)
e Broken dbx’
e Vulnerable signed module:
o CVE-2025-3052 (Binarly)
o CVE-2024-7344 (ESET)

BINARLY 2026

Platform Key
Database

Key Exchange Key
Database

https://www.binarly.io/blog/from-trust-to-trouble-the-supply-chain-implications-of-a-broken-dbx

BINARLY 2026

i A
PKfail 11f

Onh, hil | am a private key,
that's been available on
(h GitHub for 6 months! &

Version: 3 (0x2)
Serial Number:

55:fb:ef:87:81:23:00:84:47:17:0b:b3:cd:87:3a:f4 e ~
Signature Aldgorithm: sha256WithRSAEncryption $ openssl pkcsl2 -in FW_priKey.pfx -nodes
ISSPQT: Enter Import Password:
Validity \G]
Not Before: Nov 8 23:32:53 2017 GMT
Not After : Nov 8 23:32:52 2021 GMT N
Subject: $ cat AmiTestKey.sdl | grep password -C3
Subject Public Key lnto: TOKEN
Public Key Algorithm: rsaEncryption Name = "FW_PFX_Password"
Public-Key: (2048 bit)
Modulus: Help = "Specifies the password to use when opening a PFX -
00:e7:36:7b:20:92:ba:7f:aa:a3:f6:0e:49:08:87: Private Key container file."
£5:1c:11:33:ba:5d:f8:9b:5c:ed:c7:90:e4: f3:41: TokenType = Expression
TargetMAK = Yes
S D 5

e
$ openssl x509 -noout -text -in FW_pubKey.cer | rg "Issuer:|Subject:"
Issuer: CN=DO NOT TRUST - AMI Test PK
Subject: CN=DO NOT TRUST - AMI Test PK

o

https://www.binarly.io/pkfail

https://www.binarly.io/pkfail

CVE—2025—3052 BINARLY 2026

e Vulnerability found in module signed
with Microsoft's third-party UEFI
certificate ("Microsoft Corporation
UEFI CA 2011")

~
RT->GetVariable(L"IhisiParamBuffer", GUID, OLL, &Size, &VarContent)

e Secure Boot can be bypassed
any device trusting this key

‘ VarContent is blindly trusted and ‘
used for multiple memory writes!

e Microsoft added 14 new ha
dbx as a mitigation during Pa
Tuesday |

BINARLY 2026

Physical Attacks are (Sometimes)
Out of Scope

Hello Alex,

Thank you for your patience as our team diligently worked through this. After additional review and
follow-up technical discussions, our product team stakeholders and PSIRT engineering concluded that
the physical attack vector falls within the confines of a security weakness as opposed to a security

vulnerability. The rational for that assessment is there would be persistent malicious code running in the
BIOS, but not something that would be able to reach into the OS during boot handoff . The product
teams will look into potential security hardening regarding this scenario, but at this time, our
classification of these items will be considered as security weaknesses.

BINARLY 2026

binarly

BINARLY 2026

High-Level Overview of the
Windows Boot Process

Windows Boot Windows 0S Windows
UEFI Manager Loader Kernel
(bootmgfw.efi) (winload.efi) (ntoskrnl.exe)

https://www.binarly.io/blog/uefi-bootkit-hunting-in-depth-search-for-unique-code-behavior

The Anatomy of an UEFI Bootkit:

redlotus-rs

‘ UEFI ;

(VWindows Boot) ‘ Windows 0S ’

Manager Loader
LFbootmng.efi) ‘ (winload.efi)

(Windows
Kernel
)

LFntoskrnl.exe

BINARLY 2026

07

Windows completes the boot
process with a rootkit installed

— 02

Load in memory Windows Boot
Manager (bootmgfw.efi) and hook
ImgArchStartBootApplication

01

Exploit a vulnerability in
UEFI firmware, start bootkit infection
chain

06

Execution is redirected to

the rootkit kernel driver which hooks
HalDispatchTable in the Windows
Kernel (ntoskrnl.exe)

— 03

04

During ImgArchStartBootApplication,
hook BlimgAllocatelmageBuffer
OslFwpKernelSetupPhasel and of
Windows OS Loader (winload.efi)

During BlimgAllocatelmageBuffer,
allocate a buffer for the rootkit
kernel driver

05

During OslFwpKernelSetupPhaseT,
patch a victim driver entrypoint to
redirect execution to the rootkit driver

binarly

e 1 T s
Combining a Secure Boot Bypass
with a Bootkit on Widos 1

L bt - e

N

http://www.youtube.com/watch?v=TnECRMf2CoQ

The Sky’s the Limit

1. User Mode - Kernel Mo‘dé’é—oﬂmmunicoﬂon
ntddk.h

2. Direct Kernel Object Manipulation
ntddk.h

3. Keyboard and Mouse Filter
ntddk.h

4. Windows Filtering Platform
fwpmk.h, fwpsk.h, fwpmu.h

5. WinSock Kernel
wsk.h

6. File System Minifilter Driver
fltkernel.h

Toolkit
Communication

Hide Processes
DKOM

Keylogger
Keyboard Filter

Network Control
WFP

Network Requests
WSK

Hide Folders
Minifilter

Infecting the Boot to Own the Kernel, Alejandro Vazquez, Maria San Jose, DEF CON 33, https://github.com/TheMalwareGuardian/Abyss

BINARLY 2026

https://github.com/TheMalwareGuardian/Abyss

BINARLY 2026

Event Tracing for Windows

e Event Tracing for Windows (ETW) is a native, high-performance Windows
telemetry framework that records detailed kernel and user-mode system
activity.

e EDR solutions leverage ETW to gain deep visibility into process execution,
file operations, registry changes, and network activity using trusted
OS-level signals.

e ETW is ideal for EDR because it provides telemetry, enabling real-time
detection and forensic analysis without degrading system performance.

Event Tracing for Windows

BINARLY

blSaKkhat

EMMOPE 2621

E Attacker’s
o

Win Apps to control ETW-based
Sessions and Providers EDR

X . ¢ OS instrumentation
OS Drivers with

d * ETW API to control
vt S L sl |
Attacker’s

Driver

ETW Data structures

Veni, No Vidi, No Vici: Attacks on ETW Blind EDR Sensors, Binarly REsearch Team, BH EU 2021

User mode

ETW Registry Settings

Kernel mode

Color Map of Attacks
<= Attacks on ETW from inside
an Evil Process
Attacks on ETW by modifying
enwvars, registry and log files

Attacks on user-mode ETW
Providers

~@=® Attacks on kernel-mode ETW
Providers

~@=® Attackson ETW Sessions

2026

BINARLY 2026

Event Tracing for Windows

Make the EDR believe ‘things’ happened, for instance for impersonating attacks which
are too risky or complicated to run.

Use it offensively for creating distractions or spoofing events.

Since most cloud based EDRs have caps on events, we potentially can create blind
spots.

I'm in your logs now, deceiving your analysts and blinding your EDR, Olaf Hartong, BH US 2025

BINARLY 2026

binarly

BINARLY 2026

Binarly’s Dataset of UEFI Firmware

Dataset with 80,000 UEFI firmware imageS: *%% 7 NUMBER OF FIRMWARE RELEASES

e Spanning over 10 years

16,000 -

e Includes every major vendor
(Lenovo, Dell, HP, Intel..)
o Tracking around 10,000 of
recent device models

14,000 -

12,000 -

10,000 -

o At least one firmware released
in the past 4 years
o 25% can be considered EOL
(no firmware released

in the last 2 years)

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

BINARLY 2026

Impact on Known Firmware
Vulnerabilities

Firmware vulnerable to

LogoFAIL and PixieFail
20 -

AVERAGE VULNERABILITIES
8 1 PER FIRMWARE

16 -

14 -

12 -

10 -

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

BINARLY 2026

Impact on Unknown Firmware
Vulnerabillities

Good news: the average
number of vulnerabilities per

120 - firmware is decreasing
AVERAGE FINDINGS

M0 4 PER FIRMWARE SAMPLE

100 -

90 A

80 4 [High
B Medium

70 -

60 -
50
40
30
20
10

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

BINARLY

| atest From the Trenches

ssssss

Introducing HybridPetya:

ESET Research has discovered Petya/NotPetya copycat with UEFI
: - Secure Boot bypass
H y b r I d P etya I o n th e VI ru STOta I Sa m p I e UEFI copycat of Petya/NotPetya exploiting CVE-2024-7344 discovered on VirusTotal

Q Martin Smolar
2 Sep 2025 n. r

read

sharing platform. It is a copycat of the
infamous Petya/NotPetya malware,
adding the capability of compromising
UEFI-based systems and Weaponli?z'
CVE-2024-7344 to bypass UEFI'S

Boot on outdated systems.

2026

BINARLY 2026

binarly

BINARLY 2026

The long chain of Supermicro BMC
firmware fixes

e |t all started with CVE-2024-10237

AECVE-2024-10237 Detail
AWAITING ANALYSIS

This CVE record has been marked for NVD enrichment efforts.

Description
There is a vulnerability in the BMC firmware image authentication design at Supermicro MBD-X12DPG-OAG6 . An attacker can modify the

firmware to bypass BMC inspection and bypass the signature verification process

https://nvd.nist.gov/vuln/detail/CVE-2024-10237

BINARLY 2026

The long chain of Supermicro BMC
firmware fixes

e It all started with CVE-2024-10237

e |t took Supermicro one year and three release cycles to resolve the issues
e Fixes for CVE-2025-12006 and CVE-2025-12007 were released in January 2026

MAY 2025 OCTOBER 2025
~“-| Binarly REsearch bypasses Binarly REsearch bypasses
ol | CVE-2024-10237 fix and finds another both CVE-2025-7937 and
7.0 vulnerability in the alternative logic CVE-2025-6198 fixes
JANUARY 2025 SEPTEMBER 2025 JANUARY 2026
The fix for CVE-2024-10237 Fixes for CVE-2025-7937 and Fixes for CVE-2025-12006 and

was released CVE-2025-6198 were released CVE-2025-12007 were released

https://nvd.nist.gov/vuln/detail/CVE-2024-10237

BINARLY 2026

Supermicro BMC validation

Current BMC firmware Uploaded BMC firmware

! bootloader ! E < L I |
I sig_table | : \
! pdb_seca t_\ E \I |
! kernel ! L‘% E l \I |
I rootFs I E E |
: """""""""""""" ; (Step 1 -—| pdb_isec
[RSA Public Key Signature value]
Two main validation methods:

Verify Signature

e fwmap-based validation
e sig_table-based validation

BINARLY 2026

fwmap-based validation

fwmap table contains information about the firmware regions:

o Offset
e sSize
e attributes (e.g. whether the region is signed or not)

pdb seca

DBA| ? wmap . protmap . fwinfo Y pubk
e . cpldke

pdb magic pdb_file name

01103FC 00000000 00000000 00000000 00000000 00000000 00000000 00000009 00000000 00000000 00V00000 00000R00 00000000 00VOVVRR 626F6F74 GCEF6164 65720000 00000000 bootloader
0110440 | 00000000 00100000 00000001 00AAS400 DCBBSBFF 00000000 00000000 00000000 7369675F 7461626C 65000000 00000000 00100000 00001000 00000005 00001000 C71C0011 T el 25 sig_table .
0110484 | 00000000 00000000 00000000 7064625F 73656361 00000000 00000000 00110000 00010000 00000005 00010000 127120(4 00000000 00000000 00000000 6B65726E 656(0000 pdb_seca q . kernel
01104C8 100000000 00000000 00130000 00400000 00000001 00325A00 BBAE2F84 00000000 00000000 00000000 726F6F74 46530000 00000000 00000000 00530000 02890000 00000001 (] (44 So s rootfFs S

011050C 102558080 25CC854C 00000000 00000000 0OVOVRV0 7064625F 69736563 00000000 00000000 02DC0000 00010000 00000004 00010000 127120(4 00000000 00000000 00000000 U..%..L pdb_isec . q .

0110550 |6E767261 6D310000 00000000 00000000 02DDEOCO 00VA0R00 00000002 00000000 00000000 00000000 000V0V00 0AVVVV00 75626F6F 745F6S6E 76000000 00000000 02E80000 § nvraml s uboot_env

0110594 100010000 30000002 00000000 00000000 00000000 00000000 00000000 6E767261 6D000V00 000VOV00 GVVVVV00 O2ECO0O0 VOALOVRD 00000002 00V0R000 00000000 00000000 o nvram

0110508 | 00000000 00000000 FFF

FFF FFFFFFFF FFFFFFFF FFF

FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFF

EEE-FEFEEFFE FREEEERE R koo iiiisi sinaini siaio o miniviaio/sie,n oo s 006 o/6 eaie o o0 b6 856 018 010 510 88 810018

BINARLY

fwmap from Supermicro X12STW-F

O O A WN -

. offset:
. offset:
. offset:
. offset:
. offset:
. offset:

0x0000000 , size:
0x0100000 , size:
0x0110000 , size:
0x0130000 , size:
0x0530000 , size:
0x2dc0000 , size:

0x00a5400 , sighed:
0x0001000 , signhed:
0x0010000 , sighed:
0x0325a00 , signhed:
0x2558080 , sighed:
0x0010000 , signed:

true
true
true
true

true

bootloader
sig_table
pdb_seca
kernel

rootFS

false - pdb_isec

0x0

0x100000

0x110000

0x120000
0x130000

0x530000

0x2a88080
0x2dc0000

0x2dd0000

Original BMC Firmware

bootloader

sig_table

pdb_seca

kernel

rootFS

pdb_isec

2026

CVE-2024-10237: PoC

Custom fwmap

1. offset: 0x0000000 , Size: 0x00a5400 , signed: true - bootloader
2. offset: 0x0100000 , size: 0x0001000 , signed: true - sig_table

|3.oﬁset 0x0120000 , size: 0x2010000 , signed: true - pdb_seca |
4. offset: 0x0130000 , size: 0x0325a00 , signed: true - kernel

|5. offset: 0x0573000 , size: 0x2558080 , signed: true - rootFS |
6. offset: 0x2dc0000 , size: 0x0010000 , signed: false - pdb_isec

Original BMC Firmware

0x0

bootloader

sig_table

I
0x100000 l
06110000 |

i

0x120000 | |

1 ¢ 0x10000 bytes
0x130000

kernel
0x530000 |
02288080 :
i 0x33780 bytes
pdb_isec

0x2dd0000

1
0x2dc0000 |
1
|

BINARLY 2026

Custom BMC Firmware

0x0
bootloader

I 1
I 0x100000
|
[

sig_table

0x110000
pdb_seca

0x120000

|
0x130000
kernel

‘ rootFS

‘ 0x573000

| 0x2acb080
0x2dc0000

pdb_isec

0x2dd0000
1
1

E Original, untouched firmware content

Original, moved firmware content

E Custom firmware content

CVE-2024-10237: Demo

BINARLY 2026

[FWUP]D[dump_signdata_cb]: Entry

[FWUP]D[dump_signdata_cb]: Data::(3dd1a008, 00000000) not signed, bypass.
[FWUP]D[fwmap_read_by_index]: FWMAP has 10 entries.
[FWuP]D[fwmap_parser]: callback on FwMap().

[FWUP]D[dump_signdata_cb]: Entry

[FWUP]D[dump_signdata_cb]: Data::(3a3e9a008, 00000000) not signed, bypass.
[FWUP]D[fwmap_read_by_index]: FWMAP has 10 entries.

[FWUP]W[fwmap_read_by_index]: Index out of limit (10/10)!

[FWUP]W[fwmap_parser]: Get FwMap[10] failed, rc = -2!
[FWUP]D[fwmap_parser]: Done with rc = 0.

[FWUP]D[bmc_validation_check]: signdata_bio: ©x29848.
[FWUP]D[SignedFileSignaturevalidation]: Entry.
[FWUP]D[DataSignaturevalidation]: Entry.

[FWUP]D[ValidationPkcs7]: Entry.

[FWuP]D[VerifyPkcs7Data]: Entry.

[FWuP]D[VerifyPkcs7Data]: Verifying begin...
[FWUP]D[VerifyPkcs7Data]:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

e s

1

.419853]
.421382]
.426010]
.430252]
.432220]
.434068]
.434883]
.435293]
.436223]
.442064]
.442285]
.442840]
.454587]
.492460]
.557538]

557897]

BINARLY RESEARCH

peci-aspeed 1e78b000.peci-bus: peci bus 0 registered, irq 61
ipip: IPv4 and MPLS over IPv4 tunneling driver

NET: Registered protocol family 10

Segment Routing with IPv6

sit: IPv6, IPv4 and MPLS over IPv4 tunneling driver

NET: Registered protocol family 17

8021q: 802.1Q VLAN Support v1.8

Registering SWP/SWPB emulation handler

Loading compiled-in X.509 certificates

printk: console [netcon®] enabled

netconsole: network logging started

hctosys: unable to open rtc device (rtco)

VFS: Mounted root (squashfs filesystem) readonly on device 31:2.
Freeing unused kernel memory: 1024K

Checked W+X mappings: passed, no W+X pages found

Run /sbin/init as init process

BINARLY 2026

CVE-2024-10237: Supermicro’s Patch

e No custom region offsets in fwmap, only whitelisted offsets can be used
e Only certain regions can have is_signed flag

Original BMC Firmware Custom BMC Firmware
Custom fwmap 9
0x0 0x0
i I bootloader l I bootloader
1. offset: 0x0000000 , size: 0x00a5400 , signed: true - bootloader f 1 f 1
0x100000 0x100000
2. offset: 0x0100000 , size: 0x0001000 , signed: true - sig_table l sig_table I sig_table
|3. offset: 0xwi26au0 , size: 0x0010000 , signed: true - pdb_seca | AT \ l Sk ot 0000,
| | o
4. offset: 0x0130000 , size: 0x0325a00 , signed: true - kernel 0x1200001 | ¢ | x | 0x120000
1 0x10000 bytes | 1
|5. offset: @xu573ad0 , size: 0x2558080 , signed: true - rootFS I 0x130000 T A 0x130000
6. offset: 0x2dc0000 , size: 0x0010000 , signed: false - pdb_isec — = e
roo
0x2a88080 : x | 0x573000
1 i 0x337f80 bytes 0x2acbh080
0x2dc0000 |

pdb_isec

0x2dd0000 F
1
1

0x2dd0000
1

I
I
pdb_isec |
|
1 1

[
|
| 0x2dc0000
1
1

E Original, untouched firmware content

Original, moved firmware content

E Custom firmware content

BINARLY 2026

CVE-2024-10237: Bypassing the patch

e Move all the signed regions at whitelisted offset 0x100000
e Add entry in the custom fwmap and name it bootloader

Original BMC Firmware Custom BMC Firmware
Custom fwmap 9
0x0 0x0
i | ‘ bootloader
| 1. offset: 0x100000 , size: 0x2b32c00 , signed: true - bootloader : : IR
| | pdb_seca
| | 0xf0000
| 1 1 1
0x100000 |] i 10x100000
: : 1 :0x136280
0x110000
1
:] :0x’|a7280
0x130000 I 1 |
| I | | 0x1b7280
1 1 1 1
0x530000 i i I | 0x4d6b80
: : : :Dx2c32c00
0x2dc0000 0x2dc0000
pdb_isec | | pdb_isec
0x2dd0000 0x2dd0000
1 |
1

|I| Original, untouched firmware content

Original, moved firmware content

:l Custom firmware content

BINARLY 2026

CVE-2025-7937: Demo

BPOCOO

U-Boot 2019.04 (BINARLY RESEARCH)|
5

SOC: AST2600-A3
PWM1: Enable fan@ and fani
Hit any key to stop autoboot: 1 Trying 'kernel@1l' kernel subimage

Description: Linux kernel

Type: Kernel Image

Compression: uncompressed
+ OK
Loading fdt from FIT Image at 20130000 ...

Using 'conf@aspeed-ast2600ail-evb.dtb' configuration

Description: Flattened Device Tree blob
[1.127936] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHC[1.142070] i2c /dev entries driver
[1.147445] 12c_new_aspeed 1e783080.12c-bus: NEW-I2C: i2c-bus[1.201031] i2c_new_aspeed 1e78a380.12c-bus: NEW-I2C: i2c-busz] mode [2]
[1.233330] i2c_new_aspeed 1e78a500.12c-bus: NEW-I2C: i2c-bus [10]: adapter [100 khz] mode [2]
80000000, resource_size=0x1f000000, PAGE_SHIFT macro=0xc
controller MIC: DEV 1e6e0000.sdram (INTERRUPT)
[1.327206] ASPEED RSA Accelerator successfully registered
[1.340179] usbhid: USB HID core driver
[1.351795] peci_aspeed 1e78b000.peci-bus: Expect frequency: registered as minor ©
[1.371226] peci_aspeed 1e78b000.peci-bus: peci bus 0 registe[1.379486] ipip: IPv4 and MPLS over IPv4 tunneling driver
NU/Linux
BusyBox v1.35.0 (2025-06-21 00:11:57 PDT) multi-call binary.

ODE Creation mode (default a=rw)
TYPE:
b Block device
c or default a=rw)
TYPE:
b Block device
c or u Character device
p Named pipe (MAJOR MINOR must be omitted)

BusyBox v1.35.0 (2025-06-21 00:11:57 PDT) multi-call binary.

BINARLY 2026

CVE-2025-7937: Supermicro’s patch

e Checks that offset of processed pdb_seca is 0x110000
e fwmap must contain a region where offset <= pdb_seca offset < offset + size

Original BMC Firmware Custom BMC Firmware
0x0 (0]

1 \ bootloader

1 1

1 1 0xe0000

1 1 pd (&)

1 1 0xf0000

1 1 1 1
0x100000 | | ‘ 10x100000

[] [|

|] i |0x1¢:-16280
0x110000

[| * |

| | | 0x1a7280
0x130000 | 1 J

1 I 1 1 0x1b7280

1 1 1 1
0x530000 § 1 1 { 0x4d6b80

1 | L I0x2::32c00
0x2dc0000 0x2dc0000

pdb_isec pdb_isec

0x2dd0000 0x2dd0000
I

CVE-2025-7937: Bypassing the second patch

e Previously implemented checks were removed :)
o We can add fwmap entries at custom offsets again!

Original BMC Firmware Custom BMC Firmware
Custom fwmap 9
0x0 0x0
1 \ ‘ l bootloader l
|1. offset: @x2c5c080 , size: 0x00a6280 , signed: true - bootloader | L] :)
0x100000 ¥ : 0x100000
2. offset: 0x0100000 , size: 0x0001000 , signed: true - sig_table] sig_table sig_table
| 3. offset: 0x0120000 , size: 0x0010000 , signed: true - pdb_seca | i : SN b Rl
. PR . . 0x120000 0x120000
4. offset: 0x0130000 , size: 0x031f880 , signed: true - kernel i : ¢ s i | : &
5. offset: 0x0530000 , size: 0x272c080 , signed: true - rootFS x130000 g Py o
6. offset: @0x2dc000e , size: 0x0010000 , signed: false - pdb_isec R T=30000
. . rootFS rootFS
7. offset: 0x2ddeeee , size: 0x0000000 , signed: false - nvraml 0x2c5c080 | y i 0x2¢5¢080
8. offset: ox2e , size: Ox , signed: false - uboot_env ! A 03180 bvtes ! 0x2d02300
- " 0x2dc0000 < 0x2dc0000
9. offset: 09x0110000 , size: 0x0000001 , signed: false - nvram pdb_isec l pdb_isec
0x2dd0000 0x2dd0000
1
1

:l Original, untouched firmware content

Original, moved firmware content

E Custom firmware content

CVE-2025-12006: D

emo

BINARLY

O & 19216810128/ edirect.cc]

System
Configuration
Remote Control System

Maintenance

Firmware Management
Troubleshooting

BMC Reset
Maintenance Event Log
License Management

Task List

w ® @ &8 =

Hi ! Welcome back | &

Power Consumption

je Usage == Max Peak

-40m -25m
X:Time(min) Y:Power Consumption(Watt)

Remote Console Preview

HTMLS M JAVA plug-in |[C¥

2026

https://docs.google.com/file/d/1PKcypqkD6V881SXPg0E2v0CJAjalI7PA/preview
https://docs.google.com/file/d/1PKcypqkD6V881SXPg0E2v0CJAjalI7PA/preview

CVE-2025-12006: Supermicro’s final patch

e Offset of parsed pdb_seca should be equal to 0x110000
e For pdb_seca region defined in fwmap:
o offset should be 0x110000
o size should be 0x10000
o it should have is_signed attribute
e Other fwmap regions should be located at only allowed offsets
o For some regions, their size and attributes are also checked

CVE-2024-10237 CVE-2025-7937 CVE-2025-12006

Original BMC Firmware Custom BMC Firmware Original BMC Firmware Custom BMC Firmware Original BMC Firmware Custom BMC Firmware

bootloader } | [es— | { ! { bootloader } { ! [bootioader

A

| \
sig_table I slg_table i 0 1 > 4 F I sig_table sig_table
1 | | | |

CVE-2025-12006: Supermicro’s final patch

Fixes provided with the latest firmware release mitigate the issues, but:

e For both X12STW-F (fwmap) and X13SEM-F (sig_table), RSA keys used
for image signing were not rotated
o Firmware downgrade is not possible due to other changes, but may
arise in the future

e For X13SEM-F, the required validation logic was added to the libipmi.so
library, but before it was executed in the OP-TEE environment
o Potential attackers with root privileges to the BMC system could
bypass the introduced checks

BINARLY 2026

What about sig_table-based validation?

e Similar logic, similar problems — CVE-2025-6198, CVE-2025-12007
e Blogpost coming soon, stay tuned!

BINARLY 2026

Conclusions

e Firmware is ubiquitous, complex and not tested enough

e Number of bugs in the UEFI ecosystem are declining, still almost every
firmware out there has 1+ high-severity bug

e Bugs in UEFI can impact the boot process and OS integrity

e BMC firmware validation is not a trivial task

BINARLY 2026

binarly

sig_table-based validation
BINARLY 2026

e Similar to fwmap, contains information about signed firmware regions:
o offset
o size

e Always located at fixed offset 0x100000

sig_table

Mldu | 00100000 80008000|00110000 30080000]|00130000 81F36000|00630000 90000000] 02630000 03DCO400

0
09000 200000

D W Dm
0100100 00000000 00002"""'~""00000 ooooooc’eg'_"{'.‘ _Qf.f§etmo§!‘_c‘?‘_’?9'_ !‘?9'9.".?'_2.% 00000000 |
0100140 00000000 00000 Se-00000 00000000 00000000 G00E0000 00000000 G0000000 00000000 .

0100180 ' 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

firmware reglons
UuuL

CVE-2025-6198 — PoC

Custom sig_table

1. offset: 0x0000000 , size: 0x0100000 — bootloader

|2. offset: 0x0101000 , size: 0x0001000 — sig_table (original)|

3. offset: 0x0110000 , size: 9x0010000 — pdb_seca

4. offset: 9x0130000 , size: 0x0095600 — kernel (before custom content)

5. offset: 0x0102000 , size: 0x0000200 — kernel (original data that was replaced with custom content)
6. offset: 9x01c5800 , size: 0x0354600 — kernel (after custom content)

7. offset: 0x0630000 , size: 0x2000000 — rootFS (1st part)

8. offset: 0x2630000 , size: 0x064a080 — rootFS (2nd part)

BINARLY 2026

Original BMC Firmware Custom BMC Firmware

0x0 0x0
bootloader bootloader
0x100000 0x100000
sig_table
0x101000 | | 0x101000
1 1 1 1
1 1 1 | 0x102000
1 0xf000 bytes 1 I 1 0x103000
1 1 1 1
1 1 1 1
0x110000 0x110000
pdb_seca pdb_seca
0x120000 0x120000
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
| 1 1 1
0x130000 0x130000
| kernel I kernel
0x1c5600 , 0x1c5600
‘ kernel
0x1c5800 0x1¢5800
| kernel I kernel
o
rootFs (1) rootFs (1)
0x2630000 0x2630000
rootFsS (2) rootFsS (2)

E Original, untouched firmware content

Original, moved firmware content

E Custom firmware content

CVE-2025-6198 — exploitation demo

U-Boot SPL 2019.04-00346-g73a160fd6ee (Nov 14 2024 - 17:53:28 -0800) BINARLY 2026
same as key2, ignore it
secure boot up with key1l
Trying to boot from RAM with Aspeed Secure Boot
Trying primary uboot ...
Starting verify image.
Verifing Signature ... with KO ... with K1 ... OK.

U-Boot 2019.04-00346-g7a160fd6ee (Nov 14 2024 - 17:53:28 -0800)

SOC: AST2600-A3

RST: Power On !

Secure Boot: Mode_2, 8¢¢DRSA4096_SHAS512

FMC 2nd Boot (ABR): Enable, Single flash, Source: Primary, bspi_size: 8 MB
eSPI Mode: SIO:Enable : SuperIO-4e

Eth: MACO: RMII/NCSI, MAC1: RMII/NCSI, MAC2: RMII/NCSI, MAC3: RMII/NCSI
Model: Aspeed BMC

DRAM: already initialized, 448 MiB (capacity:512 MiB, VGA:16 MiB), ECC off
PWM1: Enable fan® and fani

COM: Enable portl and port2, disable port3 and port4

MMC: emmc_slot0@100: ©

Loading Environment from SPI Flash... SF: Detected w25q64cv with page size 256 Bytes, erase size 4 KiB, total 8 MiB
OK

Disabling Serial Port for production image...I/TC:

I/TC: Non-secure external DT found

I/TC: OP-TEE version: 9915cfbi-dev |(BRLY RESEARCH)|

I/TC: Primary CPU initializing

I/TC: Primary CPU switching to normal world boot

I/TC: Secondary CPU 1 initializing

I/TC: Secondary CPU 1 switching to normal world boot

I/TC: Initial pta secure mem pa 9c200000, size 2300000

I/TC: Get random number type 1 from OTP failed

I/TC: Invoked u-boot environment variable get cmd (verify)

I/TC: SPI0:0 JEDEC ID ef4017 found w25q64jv size=8192kB clk=25/25Mhz

I/TC: Invoked u-boot environment variable get cmd (boardid)

CVE-2025-6198 - the fix

BINARLY 2026

e (heckthatthe offset of parsed sig_table is 0x100000
e sig_table must contain a region where offset <= sig_table offset < offset + size

Custem-sig-table
1. offset: 0x0000000 , size: 0x0100000 — bootloader
|2. offset: 0x0101000 , size: 0x0001000 — sig_table (original)|
3. offset: 0x0110000 , size: 0x0010000 — pdb_seca
4. offset: 0x0130000 , size: 0x0095600 — kernel (before custom content)
5. offset: 0x0102000 , size: 0x0000200 — kernel (original data that was replaced with custom content)
6. offset: 0x01c5800 , size: 0x0354600 — kernel (after custom content)
7. offset: 0x0630000 , size: 0x2000000 — rootFS (1st part)
8. offset: 0x2630000 , size: 0x064a080 — rootFS (2nd part)

CVE-2025-6198 - fix bypass

Custom sig_table

offset: 0x0000000 , size: 0x0100000 - bootloader

offset: 0x0100000 , size: 0x0000001 - sig_table (1st part)
offset: 0x0101001 , size: 0x0000fff - sig_table (2nd part)

offset: 0x0110000 , size: 0x0010000 - pdb_seca

offset: 0x0130000 , size: 0x0098e00 - kernel (before custom content)
offset: 0x0102000 , size: 0x0000200 - kernel (original data that was replaced with custom content)
offset: 0x01c9000 , size: 0x034dc00 - kernel (after custom content)

offset: 0x0630000 , size: 0x2000000 - rootFS (1st part)
offset: 0x2630000 , size: 9x07b8080 - rootFS (2nd part)

© BN o o] pjw N2

0x0

0x100000

0x101000

0x110000

0x120000

0x130000
0x1c8e00

0x1c9000

0x630000

0x2630000

Original BMC Firmware

bootloader

0xf000 bytes

pdb_seca

kernel

kernel

rootFsS (1)

rootFs (2)

BINARLY 2026

Custom BMC Firmware

bootloader

sig_table

pdb_seca

kernel

kernel

kernel

rootFs (1)

rootFs (2)

E Original, untouched firmware content

Original, moved firmware content

E Custom firmware content

0x0

0x100000

0x101000

0x102000
0x102200

0x110000

0x120000

0x130000
0x1c8e00

0x1c9000

0x630000

0x2630000

CVE-2025-12007 — exploitation demo

g« > C O & 192.168.10.61/cgi/url_redirect.cgi?url_name=topmenu 0 BmﬁzL—W 2@26

@ Hi ! Welcome back ! &
@ Dashboard
£ Configuration + .
B Remote Control System Host Power Consumption
R Maintenance * ® Firmware Version 01.05.02 Server Host Name == Min Peak == Average Usage == Max Peak
12
(F) Firmware Build 08/02/2025 Server IP Address 192.168.10.61
Time o .
IPv6 Address 1 fe80::c274:42f5:63ba:4b7b 08
® Redfish Version 1.21.1
06
BIOS Firmware BIOS Date: 12/07/2023 Ver i
Version 21
02
BIOS Build Time ~ 12/07/2023 00
-55m -40 m -25m -10m
(C)CPLD Version F2.60.10 X:Time(min) Y:Power Consumption(Watt)
BMC MAC 3C:ECEF:DF:ACBC
Address
(©LAN 1 MAC 3C:ECEF.DF:A4:42 Remote Console Preview
Address .
(©LaN2MAC 3CECEF:DF:A4:43 o
Address

https://docs.google.com/file/d/1-CSFHanoj67poK7oi2MDMSbHNaXSrEDL/preview

CVE-2025-12007 - the fix

BINARLY 2026
e Onlytwo allowed offsets for sig_table entries:

o 0x0
o 0x3FB000O (location of region containing image cryptographic signature)

Original BMC Firmware Custom BMC Firmware Original BMC Firmware Custom BMC Firmware
| bootloader | bootloader | bootloader I bootloader
I 1 I }
I 1 I 1 1 I I |
! 0xf000 bytes ! 1 ! ! 0xf000 bytes ! 1 |
I 1 [} [} 1 1 1 |
I 1 [} 1 1 I I |
| pdb_seca pdb_seca | | pdb_seca pdb_seca
I 1 I 1 I 1 I 1
I 1 [} 1 1 I 1 I
1 1 | 1 1 1 1 |
1 1 | 1 1 1 1 |
I 1 1 1 1 1 1 I
| 1 1]
| kernel] n, | kernel |
} | !

| kernel | rn [kernel | m
I 1 1 |

rootFs (1) rootFS (1) rootFs (1) rootFsS (1)

rootFs (2) rootFS (2) rootFS (2) rootFs (2)

The Anatomy of a UEFI Bootkit: redlotus-rs

BINARLY 2026

Windows Boot Windows 0S Windows

Manager Loader Kernel
(bootmgfw.efi) (winload.efi) (ntoskrnl.exe)

1. Exploit a vulnerability in UEFI
firmware, start bootkit infection
chain

2. Load in memory Windows Boot
Manager (bootmgfw.efi) and hook

ImgArchStartBootApplication /- Windows completes the boot

process with a rootkit installed

3. During ImgArchStartBootApplication,
hook BlimgAllocatelmageBuffer
OslFwpKernelSetupPhasel and of
Windows OS Loader (winload.efi)

6. Execution is redirected to the rootkit
kernel driver which hooks
HalDispatchTable in the Windows Kernel
(ntoskrnl.exe)

5. During OslFwpKernelSetupPhasel,
4. During BlimgAllocatelmageBuffer, patch a victim driver entrypoint to to
allocate a buffer for the rootkit kernel redirect execution to the rootkit driver
driver

OG Plots Slide 25

Known Firmware Vulnerabilities Over Time

Slide 24

Firmware Releases by Year (2016-2025)

s per Firmware

Average Vulneral

Number of Firmware Releases.

Average Number of Unknown Vulnerabllities by Severity Over Time

BONUS !
Images from slide 4

